Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Can J Neurol Sci ; 48(1): 9-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-2278901

ABSTRACT

BACKGROUND: Albeit primarily a disease of respiratory tract, the 2019 coronavirus infectious disease (COVID-19) has been found to have causal association with a plethora of neurological, neuropsychiatric and psychological effects. This review aims to analyze them with a discussion of evolving therapeutic recommendations. METHODS: PubMed and Google Scholar were searched from 1 January 2020 to 30 May 2020 with the following key terms: "COVID-19", "SARS-CoV-2", "pandemic", "neuro-COVID", "stroke-COVID", "epilepsy-COVID", "COVID-encephalopathy", "SARS-CoV-2-encephalitis", "SARS-CoV-2-rhabdomyolysis", "COVID-demyelinating disease", "neurological manifestations", "psychosocial manifestations", "treatment recommendations", "COVID-19 and therapeutic changes", "psychiatry", "marginalised", "telemedicine", "mental health", "quarantine", "infodemic" and "social media". A few newspaper reports related to COVID-19 and psychosocial impacts have also been added as per context. RESULTS: Neurological and neuropsychiatric manifestations of COVID-19 are abundant. Clinical features of both central and peripheral nervous system involvement are evident. These have been categorically analyzed briefly with literature support. Most of the psychological effects are secondary to pandemic-associated regulatory, socioeconomic and psychosocial changes. CONCLUSION: Neurological and neuropsychiatric manifestations of this disease are only beginning to unravel. This demands a wide index of suspicion for prompt diagnosis of SARS-CoV-2 to prevent further complications and mortality.


Les impacts neurologiques et neuropsychiatriques d'une infection à la COVID-19. CONTEXTE: Bien qu'il s'agisse principalement d'une maladie des voies respiratoires, la maladie infectieuse à coronavirus apparue en 2019 (COVID-19) s'est avérée avoir un lien de causalité avec une pléthore d'impacts d'ordre neurologique, neuropsychiatrique et psychologique. Cette étude entend donc analyser ces impacts tout en discutant l'évolution des recommandations thérapeutiques se rapportant à cette maladie. MÉTHODES: Les bases de données PubMed et Google Scholar ont été interrogées entre les 1er janvier et 30 mai 2020. Les termes clés suivants ont été utilisés : « COVID-19 ¼, « SRAS ­ CoV-2 ¼, « Pandémie ¼, « Neuro ­ COVID ¼, « AVC ­ COVID ¼, « Épilepsie ­ COVID ¼, « COVID ­ encéphalopathie ¼, « SRAS ­ CoV-2 ­ encéphalite ¼, « SRAS ­ CoV-2 ­ rhabdomyolyse ¼, « COVID ­ maladie démyélinisante ¼, « Manifestations neurologiques ¼, « Manifestations psychosociales ¼, « Recommandations thérapeutiques ¼, « COVID-19 et changement thérapeutiques ¼, « Psychiatrie ¼, « Marginalisés ¼, « Télémédecine ¼, « Santé mentale ¼, « Quarantaine ¼, « Infodémique ¼ et « Médias sociaux ¼. De plus, quelques articles de journaux relatifs à la pandémie de COVID-19 et à ses impacts psychosociaux ont également été ajoutés en fonction du contexte. RÉSULTATS: Il appert que les manifestations neurologiques et neuropsychiatriques des infections à la COVID-19 sont nombreuses. Les caractéristiques cliniques d'une implication des systèmes nerveux central et périphérique sautent désormais aux yeux. Ces caractéristiques ont fait l'objet d'une brève analyse systématique à l'aide de publications scientifiques. En outre, la plupart des impacts d'ordre psychologique de cette pandémie se sont révélés moins apparents que les changements réglementaires, socioéconomiques et psychosociaux. CONCLUSION: Les manifestations neurologiques et neuropsychiatriques de cette maladie ne font que commencer à être élucidées. Cela exige donc une capacité accrue de vigilance en vue d'un diagnostic rapide, et ce, afin de prévenir des complications additionnelles et une mortalité accrue.


Subject(s)
COVID-19/physiopathology , Nervous System Diseases/physiopathology , Ageusia/etiology , Ageusia/physiopathology , Alzheimer Disease/therapy , Angiotensin-Converting Enzyme 2 , Anosmia/etiology , Anosmia/physiopathology , Brain Diseases , COVID-19/complications , COVID-19/epidemiology , COVID-19/psychology , Cerebellar Ataxia/etiology , Cerebellar Ataxia/physiopathology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Comorbidity , Delivery of Health Care , Demyelinating Diseases/therapy , Disease Management , Dizziness/etiology , Dizziness/physiopathology , Epilepsy/therapy , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Headache/etiology , Headache/physiopathology , Humans , Hypoxia, Brain/physiopathology , Inflammation/physiopathology , Meningoencephalitis/etiology , Meningoencephalitis/physiopathology , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Myelitis, Transverse/etiology , Myelitis, Transverse/physiopathology , Myoclonus/etiology , Myoclonus/physiopathology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Parkinson Disease/therapy , Polyneuropathies/etiology , Polyneuropathies/physiopathology , SARS-CoV-2 , Seizures/etiology , Seizures/physiopathology , Stroke/therapy , Viral Tropism
3.
Trop Doct ; 53(2): 285-287, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2240889

ABSTRACT

We present a cluster of patients with osteomalacic myopathy in the aftermath of the COVID-19 pandemic. We believe that the home confinement of these children may have contributed to the resurgence of this condition. This deficiency is eminently reversible.


Subject(s)
COVID-19 , Muscular Diseases , Rickets , Vitamin D Deficiency , Child , Humans , Vitamin D Deficiency/epidemiology , Vitamin D , Pandemics , COVID-19/epidemiology , Muscular Diseases/diagnosis , Muscular Diseases/epidemiology , Muscular Diseases/etiology
4.
J Neurophysiol ; 129(1): 191-198, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2214081

ABSTRACT

Neurological manifestations associated with Coronavirus Disease-2019 (COVID-19) are commonly reported, but patients were not referred to perform the electrophysiological assessment. We aimed to review the existing literature on clinical studies on COVID-19 peripheral neuropathy to correlate patients' symptoms and characteristics with nerve conduction studies/electromyography (NCS/EMG) outcomes. This protocol is registered in the Open Science Framework (https://www.doi.org/10.17605/OSF.IO/ZF4PK). The systematic search included PubMed, ScienceDirect, and Google Scholar, for articles published from December 2019 to March 2022. A total of 727 articles were collected, and according to our inclusion and exclusion criteria, only 6 articles were included. Of 195 participants, only 175 underwent NCS/EMG assessment. Of these, 44 participants (25.1%) had abnormal EMG, 54 participants (30.8%) had abnormal motor NCS, and only 7 participants (4%) had abnormal sensory NCS. All cases presented with myopathy, while a limited number of cases presented with polyneuropathy. According to motor NCS and EMG, the most affected nerves were the tibial and peroneal in the lower extremities and the ulnar nerve in the upper extremities. Interestingly, the median nerve was reported to be associated with the severity and the rate of motor recovery of patients with COVID-19. COVID-19 generates a demyelinating motor neuropathy and myopathy. Clinicians are encouraged to refer patients with COVID-19 presenting with neurological symptoms to be assessed by electrophysiological methods to objectively determine the nature of their symptoms, follow their prognosis, and plan their rehabilitation.


Subject(s)
COVID-19 , Muscular Diseases , Peripheral Nervous System Diseases , Polyneuropathies , Humans , Neural Conduction/physiology , Polyneuropathies/diagnosis , Electromyography , Muscular Diseases/etiology
5.
Intern Med ; 61(23): 3605-3609, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2029869

ABSTRACT

A 26-year-old Japanese woman developed a fever, myalgia and gait disturbance one day after receiving the second dose of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. A neurological examination revealed symmetrical weakness and myalgia in proximal lower limbs, and a blood examination showed prominent elevation of creatinine kinase. Magnetic resonance imaging (MRI) revealed a high signal intensity in the thigh muscles on short-tau inversion recovery images, and antibody testing revealed positive findings for anti-signal recognition particle (SRP) antibody. Thus, anti-SRP antibody-positive immune-mediated myopathy was diagnosed. We initiated immunotherapy, and she was ultimately able to walk stably.


Subject(s)
COVID-19 , Muscular Diseases , Female , Humans , Adult , Signal Recognition Particle , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines/adverse effects , Myalgia , Autoantibodies , COVID-19/prevention & control , Muscular Diseases/etiology , Muscular Diseases/drug therapy , Vaccination
6.
Curr Opin Neurol ; 35(5): 622-628, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1992449

ABSTRACT

PURPOSE OF REVIEW: The global spread of severe acute respiratory syndrome coronavirus 2 resulted in many cases of acute and postacute muscular symptoms. In this review, we try to decipher the potential underlying pathomechanisms and summarize the potential links between viral infection and muscle affection. RECENT FINDINGS: Disregarding single case studies that do not allow safe conclusions due to the high number of infections, histopathological evidence of myositis has only been reported in deceased individuals with severe COVID-19. Postacute myalgia and weakness seem to occur in a subset of patients up to one year after initial infection, reminiscent of postinfectious syndromes (PIS) described in prior epidemics and pandemics of the past. SUMMARY: COVID-19 associated myopathy likely comprises different entities with heterogeneous pathomechanisms. Individual factors such as disease severity and duration, age, sex, constitutional susceptibilities, and preexisting conditions are important to consider when formulating a diagnosis. Persisting symptoms show overlapping features with PIS or postintensive care syndrome. In lack of strong evidence for a direct infection of myocytes, inflammatory myopathies associated with COVID-19 are presumably immune-mediated. Differential diagnosis of rheumatological and nonmuscular neurological origin coinciding with the infection need to be considered, due to the extremely high numbers of newly occurring infections the last 2 years.


Subject(s)
COVID-19 , Muscular Diseases , Virus Diseases , COVID-19/complications , Humans , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Pandemics , SARS-CoV-2
7.
Ulus Travma Acil Cerrahi Derg ; 28(7): 920-926, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1934719

ABSTRACT

BACKGROUND: The COVID-19 pandemic started to affect Turkey in March 2020. In this study, we retrospectively investigated spontaneous rectus sheath hematoma (S-RSH) in patients with COVID-19 presenting with acute abdominal pain during the ongoing pandemic. METHODS: The demographic characteristics, laboratory findings, length of hospital stay, and treatment processes of COVID-19 cases with S-RSH detected between March and December 2020 were recorded. The rectus sheath hematoma diagnosis of the patients was made using abdominal computed tomography, and the patients were followed up. Low-molecular-weight heparin treatment, which was initiated upon admission, was continued during the follow-up. RESULTS: S-RSH was detected in 13 out of 220 patients with COVID-19 who were referred to general surgery for consultation due to acute abdominal pain. The mean age of these patients was 78±13 years, and the female-to-male ratio was 1.6. Mechanical ven-tilation support was applied to three patients, all of whom were followed up in the intensive care unit. Two patients died for reasons independent of rectus sheath hematoma during their treatment. Among the laboratory findings, the activated partial thromboplastin time (aPTT) values did not deviate from the normal range. While there was no correlation between the international normalized ratio (INR) and aPTT (p>0.01), a significant correlation was found between INR and interleukin-6 (IL-6) (p<0.002). None of the patients required surgical or endovascular interventional radiology procedures. CONCLUSION: In the literature, the incidence of S-RSH in patients presenting with acute abdominal pain is 1.8%. However, in our series, this rate was approximately 3 times higher. Our patients' normal INR and aPTT values suggest that coagulopathy was mostly secondary to endothelial damage. In addition, the significantly higher IL-6 values (p<0.002) indicate the development of vasculitis along with the acute inflammatory process. S-RSH can be more commonly explained the high severity of vasculitis and endothelial damage due to viral infection.


Subject(s)
Abdomen, Acute , COVID-19 , Muscular Diseases , Vasculitis , Abdomen, Acute/epidemiology , Abdominal Pain/etiology , Aged , Aged, 80 and over , Female , Hematoma/diagnostic imaging , Hematoma/epidemiology , Hematoma/etiology , Humans , Incidence , Interleukin-6 , Male , Muscular Diseases/diagnosis , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Pandemics , Rectus Abdominis/diagnostic imaging , Retrospective Studies , Vasculitis/complications , Vasculitis/epidemiology
9.
J Cachexia Sarcopenia Muscle ; 13(3): 1883-1895, 2022 06.
Article in English | MEDLINE | ID: covidwho-1772719

ABSTRACT

BACKGROUND: The COVID-19 pandemic has greatly increased the incidence and clinical importance of critical illness myopathy (CIM), because it is one of the most common complications of modern intensive care medicine. Current diagnostic criteria only allow diagnosis of CIM at an advanced stage, so that patients are at risk of being overlooked, especially in early stages. To determine the frequency of CIM and to assess a recently proposed tool for early diagnosis, we have followed a cohort of COVID-19 patients with acute respiratory distress syndrome and compared the time course of muscle excitability measurements with the definite diagnosis of CIM. METHODS: Adult COVID-19 patients admitted to the Intensive Care Unit of the University Hospital Bern, Switzerland requiring mechanical ventilation were recruited and examined on Days 1, 2, 5, and 10 post-intubation. Clinical examination, muscle excitability measurements, medication record, and laboratory analyses were performed on all study visits, and additionally nerve conduction studies, electromyography and muscle biopsy on Day 10. Muscle excitability data were compared with a cohort of 31 age-matched healthy subjects. Diagnosis of definite CIM was made according to the current guidelines and was based on patient history, results of clinical and electrophysiological examinations as well as muscle biopsy. RESULTS: Complete data were available in 31 out of 44 recruited patients (mean [SD] age, 62.4 [9.8] years). Of these, 17 (55%) developed CIM. Muscle excitability measurements on Day 10 discriminated between patients who developed CIM and those who did not, with a diagnostic precision of 90% (AUC 0.908; 95% CI 0.799-1.000; sensitivity 1.000; specificity 0.714). On Days 1 and 2, muscle excitability parameters also discriminated between the two groups with 73% (AUC 0.734; 95% CI 0.550-0.919; sensitivity 0.562; specificity 0.857) and 82% (AUC 0.820; CI 0.652-0.903; sensitivity 0.750; specificity 0.923) diagnostic precision, respectively. All critically ill COVID-19 patients showed signs of muscle membrane depolarization compared with healthy subjects, but in patients who developed CIM muscle membrane depolarization on Days 1, 2 and 10 was more pronounced than in patients who did not develop CIM. CONCLUSIONS: This study reports a 55% prevalence of definite CIM in critically ill COVID-19 patients. Furthermore, the results confirm that muscle excitability measurements may serve as an alternative method for CIM diagnosis and support its use as a tool for early diagnosis and monitoring the development of CIM.


Subject(s)
COVID-19 , Muscular Diseases , Polyneuropathies , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/diagnosis , Critical Illness/epidemiology , Early Diagnosis , Humans , Middle Aged , Muscular Diseases/diagnosis , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Pandemics , Polyneuropathies/diagnosis , Polyneuropathies/epidemiology , Polyneuropathies/etiology
11.
Front Endocrinol (Lausanne) ; 13: 801133, 2022.
Article in English | MEDLINE | ID: covidwho-1731766

ABSTRACT

BACKGROUND: acute illnesses, like COVID-19, can act as a catabolic stimulus on muscles. So far, no study has evaluated muscle mass and quality through limb ultrasound in post-COVID-19 patients. METHODS: cross sectional observational study, including patients seen one month after hospital discharge for SARS-CoV-2 pneumonia. The patients underwent a multidimensional evaluation. Moreover, we performed dominant medial gastrocnemius ultrasound (US) to characterize their muscle mass and quality. RESULTS: two hundred fifty-nine individuals (median age 67, 59.8% males) were included in the study. COVID-19 survivors with reduced muscle strength had a lower muscle US thickness (1.6 versus 1.73 cm, p =0.02) and a higher muscle stiffness (87 versus 76.3, p = 0.004) compared to patients with normal muscle strength. Also, patients with reduced Short Physical Performance Battery (SPPB) scores had a lower muscle US thickness (1.3 versus 1.71 cm, p = 0.01) and a higher muscle stiffness (104.9 versus 81.07, p = 0.04) compared to individuals with normal SPPB scores. The finding of increased muscle stiffness was also confirmed in patients with a pathological value (≥ 4) at the sarcopenia screening tool SARC-F (103.0 versus 79.55, p < 0.001). Muscle stiffness emerged as a significant predictor of probable sarcopenia (adjusted OR 1.02, 95% C.I. 1.002 - 1.04, p = 0.03). The optimal ultrasound cut-offs for probable sarcopenia were 1.51 cm for muscle thickness (p= 0.017) and 73.95 for muscle stiffness (p = 0.004). DISCUSSION: we described muscle ultrasound characteristics in post COVID-19 patients. Muscle ultrasound could be an innovative tool to assess muscle mass and quality in this population. Our preliminary findings need to be confirmed by future studies comparing muscle ultrasound with already validated techniques for measuring muscle mass and quality.


Subject(s)
COVID-19/epidemiology , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscular Diseases/diagnosis , Survivors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , COVID-19/pathology , Cross-Sectional Studies , Extremities/diagnostic imaging , Extremities/physiopathology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscular Diseases/etiology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Organ Size , SARS-CoV-2/physiology , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/etiology , Survivors/statistics & numerical data , Ultrasonography
12.
Ann Neurol ; 91(4): 568-574, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680263

ABSTRACT

Coronavirus disease 2019 (COVID-19) severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2 infection) can lead to intensive care unit (ICU) admission and critical illness myopathy (CIM). We examined 3 ICU patients with COVID-19 who required mechanical ventilation for pneumonia and developed CIM. Pathological examination of the skeletal muscle biopsies revealed myopathic changes consistent with CIM, variable inflammation with autophagic vacuoles, SARS-CoV immunostaining + fibers/granules, and electron microscopy findings of mitochondrial abnormalities and coronavirus-like particles. Although mitochondrial dysfunction with compromised energy production is a critical pathogenic mechanism of non-COVID-19-associated CIM, in our series of COVID-19-associated CIM, myopathic changes including prominent mitochondrial damage suggest a similar mechanism and association with direct SARS-CoV-2 muscle infection. ANN NEUROL 2022;91:568-574.


Subject(s)
COVID-19/complications , COVID-19/virology , Critical Illness , Muscular Diseases/etiology , Muscular Diseases/virology , SARS-CoV-2 , Adult , Aged , Autophagy , Fatal Outcome , Female , Humans , Inflammation/pathology , Intensive Care Units , Male , Middle Aged , Mitochondria/pathology , Muscle, Skeletal/pathology , Vacuoles/pathology
13.
Mediators Inflamm ; 2021: 2911578, 2021.
Article in English | MEDLINE | ID: covidwho-1455770

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Subject(s)
Bone Diseases/etiology , COVID-19/complications , Kynurenine/metabolism , Muscular Diseases/etiology , SARS-CoV-2 , Tryptophan/metabolism , Animals , Humans , Receptors, Aryl Hydrocarbon/physiology , Signal Transduction/physiology
14.
Mol Neurobiol ; 58(9): 4694-4715, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1281328

ABSTRACT

The unremitting coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) marked a year-long phase of public health adversaries and has severely compromised healthcare globally. Early evidence of COVID-19 noted its impact on the pulmonary and cardiovascular functions, while multiple studies in recent time shed light on its substantial neurological complications, though a comprehensive understanding of the cause(s), the mechanism(s), and their neuropathological outcomes is scarce. In the present review, we conferred evidence of neurological complications in COVID-19 patients and shed light on the SARS-CoV-2 infection routes including the hematogenous, direct/neuronal, lymphatic tissue or cerebrospinal fluid, or infiltration through infected immune cells, while the underlying mechanism of SARS-CoV-2 invasion to the central nervous system (CNS) was also discussed. In an up-to-date manner, we further reviewed the impact of COVID-19 in developing diverse neurologic manifestations associated with CNS, peripheral nervous system (PNS), skeletal muscle, and also pre-existing neurological diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and myasthenia gravis. Furthermore, we discussed the involvement of key factors including age, sex, comorbidity, and disease severity in exacerbating the neurologic manifestations in COVID-19 patients. An outlook of present therapeutic strategies and state of existing challenges in COVID-19 management was also accessed. Conclusively, the present report provides a comprehensive review of COVID-19-related neurological complications and emphasizes the need for their early clinical management in the ongoing COVID-19 pandemic.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , Aged, 80 and over , Autoimmune Diseases of the Nervous System/epidemiology , Autoimmune Diseases of the Nervous System/etiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Central Nervous System/virology , Child , Comorbidity , Female , Humans , Immune System/virology , Inflammation , Male , Middle Aged , Models, Biological , Muscular Diseases/etiology , Nervous System Diseases/drug therapy , Nervous System Diseases/epidemiology , Nervous System Diseases/physiopathology , Neurodegenerative Diseases/complications , Neurons/virology , Organ Specificity , Sex Factors , Viremia/chemically induced , Viremia/immunology , Virus Internalization
15.
Clin Neurophysiol ; 132(8): 1974-1981, 2021 08.
Article in English | MEDLINE | ID: covidwho-1237654

ABSTRACT

OBJECTIVE: To investigate the peripheral nerve and muscle function electrophysiologically in patients with persistent neuromuscular symptoms following Coronavirus disease 2019 (COVID-19). METHODS: Twenty consecutive patients from a Long-term COVID-19 Clinic referred to electrophysiological examination with the suspicion of mono- or polyneuropathy were included. Examinations were performed from 77 to 255 (median: 216) days after acute COVID-19. None of the patients had received treatment at the intensive care unit. Of these, 10 patients were not even hospitalized. Conventional nerve conduction studies (NCS) and quantitative electromyography (qEMG) findings from three muscles were compared with 20 age- and sex-matched healthy controls. RESULTS: qEMG showed myopathic changes in one or more muscles in 11 patients (55%). Motor unit potential duration was shorter in patients compared to healthy controls in biceps brachii (10.02 ± 0.28 vs 11.75 ± 0.21), vastus medialis (10.86 ± 0.37 vs 12.52 ± 0.19) and anterior tibial (11.76 ± 0.31 vs 13.26 ± 0.21) muscles. All patients with myopathic qEMG reported about physical fatigue and 8 patients about myalgia while 3 patients without myopathic changes complained about physical fatigue. CONCLUSIONS: Long-term COVID-19 does not cause large fibre neuropathy, but myopathic changes are seen. SIGNIFICANCE: Myopathy may be an important cause of physical fatigue in long-term COVID-19 even in non-hospitalized patients.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Fatigue/etiology , Fatigue/physiopathology , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Adult , Aged , COVID-19/diagnosis , Electromyography/trends , Fatigue/diagnosis , Female , Humans , Male , Middle Aged , Muscular Diseases/diagnosis , Neural Conduction/physiology , Registries , Time Factors
16.
Acta Neurol Scand ; 144(2): 161-169, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1199639

ABSTRACT

BACKGROUND: Critical illness polyneuropathy and myopathy (CIPNM) is a frequent neurological manifestation in patients with acute respiratory distress syndrome (ARDS) from coronavirus disease 2019 (COVID-19) infection. CIPNM diagnosis is usually limited to clinical evaluation. We compared patients with ARDS from COVID-19 and other aetiologies, in whom a neurophysiological evaluation for the detection of CIPNM was performed. The aim was to determine if there were any differences between these two groups in frequency of CINPM and outcome at discharge from the intensive care unit (ICU). MATERIALS AND METHODS: This was a single-centre retrospective study performed on mechanically ventilated patients consecutively admitted (January 2016-June 2020) to the ICU of Careggi Hospital, Florence, Italy, with ARDS of different aetiologies. Neurophysiological evaluation was performed on patients with stable ventilation parameters, but marked widespread hyposthenia (Medical Research Council score <48). Creatine phosphokinase (CPK), lactic dehydrogenase (LDH) and mean morning glycaemic values were collected. RESULTS: From a total of 148 patients, 23 with COVID-19 infection and 21 with ARDS due to other aetiologies, underwent electroneurography/electromyography (ENG/EMG) recording. Incidence of CIPNM was similar in the two groups, 65% (15 of 23) in COVID-19 patients and 71% (15 of 21) in patients affected by ARDS of other aetiologies. At ICU discharge, subjects with CIPNM more frequently required ventilatory support, regardless the aetiology of ARDS. CONCLUSION: ENG/EMG represents a useful tool in the identification of the neuromuscular causes underlying ventilator wean failure and patient stratification. A high incidence of CIPNM, with a similar percentage, has been observed in ARDS patients of all aetiologies.


Subject(s)
COVID-19 , Electrodiagnosis , Muscular Diseases , Polyneuropathies , Respiration, Artificial , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/epidemiology , Critical Illness , Electromyography , Female , Humans , Intensive Care Units/statistics & numerical data , Italy/epidemiology , Male , Middle Aged , Muscular Diseases/diagnosis , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Muscular Diseases/physiopathology , Polyneuropathies/diagnosis , Polyneuropathies/epidemiology , Polyneuropathies/etiology , Polyneuropathies/physiopathology , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
17.
Skelet Muscle ; 11(1): 10, 2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197351

ABSTRACT

BACKGROUND: SARS-CoV2 virus could be potentially myopathic. Serum creatinine phosphokinase (CPK) is frequently found elevated in severe SARS-CoV2 infection, which indicates skeletal muscle damage precipitating limb weakness or even ventilatory failure. CASE PRESENTATION: We addressed such a patient in his forties presented with features of severe SARS-CoV2 pneumonia and high serum CPK. He developed severe sepsis and acute respiratory distress syndrome (ARDS) and received intravenous high dose corticosteroid and tocilizumab to counter SARS-CoV2 associated cytokine surge. After 10 days of mechanical ventilation (MV), weaning was unsuccessful albeit apparently clear lung fields, having additionally severe and symmetric limb muscle weakness. Ancillary investigations in addition with serum CPK, including electromyogram, muscle biopsy, and muscle magnetic resonance imaging (MRI) suggested acute myopathy possibly due to skeletal myositis. CONCLUSION: We wish to stress that myopathogenic medication in SARS-CoV2 pneumonia should be used with caution. Additionally, serum CPK could be a potential marker to predict respiratory failure in SARS-CoV2 pneumonia as skeletal myopathy affecting chest muscles may contribute ventilatory failure on top of oxygenation failure due to SARS-CoV2 pneumonia.


Subject(s)
COVID-19/physiopathology , Creatine Kinase/blood , Muscle, Skeletal/physiopathology , Muscular Diseases/physiopathology , Quadriplegia/physiopathology , Respiratory Distress Syndrome/physiopathology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adult , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/therapy , Critical Illness , Dexamethasone/therapeutic use , Electromyography , Glucocorticoids/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Intensive Care Units , Magnetic Resonance Imaging , Male , Methicillin-Resistant Staphylococcus aureus , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/blood , Muscular Diseases/diagnosis , Muscular Diseases/etiology , Neural Conduction , Pulmonary Embolism/diagnosis , Pulmonary Embolism/drug therapy , Pulmonary Embolism/etiology , Pulmonary Embolism/physiopathology , Quadriplegia/etiology , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Severity of Illness Index , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Ventilator Weaning
18.
Clin Neurophysiol ; 132(7): 1733-1740, 2021 07.
Article in English | MEDLINE | ID: covidwho-1163547

ABSTRACT

OBJECTIVE: The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). METHODS: An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. RESULTS: 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. CONCLUSIONS: CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. SIGNIFICANCE: COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM.


Subject(s)
COVID-19/complications , Muscular Diseases/etiology , Polyneuropathies/etiology , Aged , Biomarkers/blood , COVID-19/physiopathology , Critical Illness , Female , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Muscle Weakness/etiology , Muscular Diseases/blood , Muscular Diseases/physiopathology , Polyneuropathies/blood , Polyneuropathies/physiopathology , Prospective Studies , Respiration, Artificial/statistics & numerical data , Thromboembolism/etiology
19.
Clin Neurophysiol ; 132(6): 1241-1242, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157199
SELECTION OF CITATIONS
SEARCH DETAIL